Examples ============ The following interactive Jupyter notebook examples demonstrate the capabilities of the jLM Python interface for `Lattice Microbes `_. These examples cover both Chemical Master Equation (CME) and Reaction-Diffusion Master Equation (RDME) simulations, showcasing various biochemical systems and modeling approaches. Basic Chemical Kinetics ----------------------- **Bimolecular Reactions** The bimolecular reaction examples demonstrate fundamental chemical kinetics: * `bimol.html <_static/bimol.html>`_ - Basic bimolecular reaction :math:`A + B \to C` * `bimolConc.html <_static/bimolConc.html>`_ - Bimolecular reactions with concentration effects * `bimol-pp.html <_static/bimol-pp.html>`_ - Post-processing analysis of bimolecular systems **Enzymatic Reactions** * `MichaelisMenten.html <_static/MichaelisMenten.html>`_ - Classic Michaelis-Menten enzyme kinetics .. math:: E + S &\rightleftharpoons ES \\ ES &\to E + P where :math:`E` is enzyme, :math:`S` is substrate, :math:`ES` is the enzyme-substrate complex, and :math:`P` is the product. Population Dynamics ------------------- **Predator-Prey Systems** * `LotkaVolterra.html <_static/LotkaVolterra.html>`_ - Classic Lotka-Volterra predator-prey dynamics The Lotka-Volterra system models population oscillations: .. math:: X &\to 2X \\ X + Y &\to 2Y \\ Y &\to \emptyset where :math:`X` represents prey and :math:`Y` represents predators. Gene Regulation and Cellular Processes -------------------------------------- **Gene Expression Models** * `rnaprotein.html <_static/rnaprotein.html>`_ - RNA transcription and protein translation dynamics * `lac2state.html <_static/lac2state.html>`_ - Two-state lac operon gene regulation model **Developmental Biology** * `minde.html <_static/minde.html>`_ - MinDE system for bacterial cell division dynamics The MinDE system demonstrates protein oscillations crucial for proper cell division positioning in bacteria. Advanced Simulation Techniques ----------------------------- **Model Extension and Customization** * `extendcme.html <_static/extendcme.html>`_ - Extending CME simulations with custom solvers * `extendrdme.html <_static/extendrdme.html>`_ - Extending RDME simulations for spatial systems Getting Started -------------- **Interactive Documentation** * `notebook.html <_static/jLM-doc.html>`_ - General jLM documentation and tutorial notebook This comprehensive notebook provides an introduction to the jLM interface, covering basic concepts, simulation setup, and result analysis workflows. Running the Examples ------------------- To run these examples locally, ensure you have jLM installed with Jupyter support: .. code-block:: bash # Install jLM with notebook dependencies pip install jLM[notebook] # Start Jupyter notebook server jupyter notebook The HTML files provided here are static exports of interactive Jupyter notebooks. For the full interactive experience with live code execution, download the corresponding ``.ipynb`` files from the jLM examples repository. Each example includes: * **Model definition** using jLM's Python API * **Simulation parameter setup** including solver selection and runtime options * **Result visualization** with matplotlib and other plotting libraries * **Analysis workflows** demonstrating post-processing techniques For spatial simulations (RDME), examples also demonstrate: * **Geometric region construction** using jLM's RegionBuilder tools * **Species placement and diffusion** parameter specification * **Spatial visualization** of concentration profiles and particle trajectories